Albert Einstein and the great ether debate

Is ether theory still valid for incorporation within contemporary physics or not?

I believe that it is. My reasons for saying this are based upon what Einstein said about ether in a public lecture in Germany in 1920. In his latter years Einstein continued to believe that ether was pertinent to both his Special Relativity and General Relativity models but both for different reasons. Einstein made the distinction between an immobile ether in his Special Relativity theory and in his General Relativity hypothesis he determined ether to be necessary to accommodate gravitational waves.

I have copied and posted Einstein’s 1920 lecture below and I have highlighted within the text where he has talked about his belief that ether was an important factor in his thoughts in relationship to both his relativity theories. Einstein continued to believe in ether theory until the closing days of his life, but not necessarily in relationship to his original relativity ideas. As an extension of these words keep in mind that both of Einstein’s relativity theories are the core of modern physics models and theories. Contemporary physics has elected to dismiss ether theory because it is seen an unnecessary. However, later in 1924 Einstein further affirmed his belief in the need for a universal ether. In this later document he said Quote: “…every theory of local action assumes continuous fields, and thus also an existence of an aether’.” The full essay relating to the 1924 lecture is in this pdf file.

Here is Einstein’s 1920 lecture:

Quote:

Einstein: Ether and Relativity

Albert Einstein gave an address on 5 May 1920 at the University of Leiden. He chose as his topic Ether and the Theory of Relativity. He lectured in German but we present an English translation below. The lecture was published by Methuen & Co. Ltd, London, in 1922.

Ether and the Theory of Relativity by Albert Einstein

How does it come about that alongside of the idea of ponderable matter, which is derived by abstraction from everyday life, the physicists set the idea of the existence of another kind of matter, the ether? The explanation is probably to be sought in those phenomena which have given rise to the theory of action at a distance, and in the properties of light which have led to the undulatory theory. Let us devote a little while to the consideration of these two subjects.

Outside of physics we know nothing of action at a distance. When we try to connect cause and effect in the experiences which natural objects afford us, it seems at first as if there were no other mutual actions than those of immediate contact, e.g. the communication of motion by impact, push and pull, heating or inducing combustion by means of a flame, etc. It is true that even in everyday experience weight, which is in a sense action at a distance, plays a very important part. But since in daily experience the weight of bodies meets us as something constant, something not linked to any cause which is variable in time or place, we do not in everyday life speculate as to the cause of gravity, and therefore do not become conscious of its character as action at a distance. It was Newton’s theory of gravitation that first assigned a cause for gravity by interpreting it as action at a distance, proceeding from masses. Newton’s theory is probably the greatest stride ever made in the effort towards the causal nexus of natural phenomena. And yet this theory evoked a lively sense of discomfort among Newton’s contemporaries, because it seemed to be in conflict with the principle springing from the rest of experience, that there can be reciprocal action only through contact, and not through immediate action at a distance.

It is only with reluctance that man’s desire for knowledge endures a dualism of this kind. How was unity to be preserved in his comprehension of the forces of nature? Either by trying to look upon contact forces as being themselves distant forces which admittedly are observable only at a very small distance and this was the road which Newton’s followers, who were entirely under the spell of his doctrine, mostly preferred to take; or by assuming that the Newtonian action at a distance is only apparently immediate action at a distance, but in truth is conveyed by a medium permeating space, whether by movements or by elastic deformation of this medium. Thus the endeavour toward a unified view of the nature of forces leads to the hypothesis of an ether. This hypothesis, to be sure, did not at first bring with it any advance in the theory of gravitation or in physics generally, so that it became customary to treat Newton’s law of force as an axiom not further reducible. But the ether hypothesis was bound always to play some part in physical science, even if at first only a latent part.

When in the first half of the nineteenth century the far-reaching similarity was revealed which subsists between the properties of light and those of elastic waves in ponderable bodies, the ether hypothesis found fresh support. It appeared beyond question that light must be interpreted as a vibratory process in an elastic, inert medium filling up universal space. It also seemed to be a necessary consequence of the fact that light is capable of polarisation that this medium, the ether, must be of the nature of a solid body, because transverse waves are not possible in a fluid, but only in a solid. Thus the physicists were bound to arrive at the theory of the “quasi-rigid” luminiferous ether, the parts of which can carry out no movements relatively to one another except the small movements of deformation which correspond to light-waves.

This theory – also called the theory of the stationary luminiferous ether – moreover found a strong support in an experiment which is also of fundamental importance in the special theory of relativity, the experiment of Fizeau, from which one was obliged to infer that the luminiferous ether does not take part in the movements of bodies. The phenomenon of aberration also favoured the theory of the quasi-rigid ether.

The development of the theory of electricity along the path opened up by Maxwell and Lorentz gave the development of our ideas concerning the ether quite a peculiar and unexpected turn. For Maxwell himself the ether indeed still had properties which were purely mechanical, although of a much more complicated kind than the mechanical properties of tangible solid bodies. But neither Maxwell nor his followers succeeded in elaborating a mechanical model for the ether which might furnish a satisfactory mechanical interpretation of Maxwell’s laws of the electro-magnetic field. The laws were clear and simple, the mechanical interpretations clumsy and contradictory. Almost imperceptibly the theoretical physicists adapted themselves to a situation which, from the standpoint of their mechanical programme, was very depressing. They were particularly influenced by the electro-dynamical investigations of Heinrich Hertz. For whereas they previously had required of a conclusive theory that it should content itself with the fundamental concepts which belong exclusively to mechanics (e.g. densities, velocities, deformations, stresses) they gradually accustomed themselves to admitting electric and magnetic force as fundamental concepts side by side with those of mechanics, without requiring a mechanical interpretation for them. Thus the purely mechanical view of nature was gradually abandoned. But this change led to a fundamental dualism which in the long-run was insupportable. A way of escape was now sought in the reverse direction, by reducing the principles of mechanics to those of electricity, and this especially as confidence in the strict validity of the equations of Newton’s mechanics was shaken by the experiments with b-rays and rapid cathode rays.

This dualism still confronts us in unextenuated form in the theory of Hertz, where matter appears not only as the bearer of velocities, kinetic energy, and mechanical pressures, but also as the bearer of electromagnetic fields. Since such fields also occur in vacuo – i.e. in free ether-the ether also appears as bearer of electromagnetic fields. The ether appears indistinguishable in its functions from ordinary matter. Within matter it takes part in the motion of matter and in empty space it has everywhere a velocity; so that the ether has a definitely assigned velocity throughout the whole of space. There is no fundamental difference between Hertz’s ether and ponderable matter (which in part subsists in the ether).

The Hertz theory suffered not only from the defect of ascribing to matter and ether, on the one hand mechanical states, and on the other hand electrical states, which do not stand in any conceivable relation to each other; it was also at variance with the result of Fizeau’s important experiment on the velocity of the propagation of light in moving fluids, and with other established experimental results.

Such was the state of things when H A Lorentz entered upon the scene. He brought theory into harmony with experience by means of a wonderful simplification of theoretical principles. He achieved this, the most important advance in the theory of electricity since Maxwell, by taking from ether its mechanical, and from matter its electromagnetic qualities. As in empty space, so too in the interior of material bodies, the ether, and not matter viewed atomistically, was exclusively the seat of electromagnetic fields. According to Lorentz the elementary particles of matter alone are capable of carrying out movements; their electromagnetic activity is entirely confined to the carrying of electric charges. Thus Lorentz succeeded in reducing all electromagnetic happenings to Maxwell’s equations for free space.

As to the mechanical nature of the Lorentzian ether, it may be said of it, in a somewhat playful spirit, that immobility is the only mechanical property of which it has not been deprived by H A Lorentz. It may be added that the whole change in the conception of the ether which the special theory of relativity brought about, consisted in taking away from the ether its last mechanical quality, namely, its immobility. How this is to be understood will forthwith be expounded.

The space-time theory and the kinematics of the special theory of relativity were modelled on the Maxwell-Lorentz theory of the electromagnetic field. This theory therefore satisfies the conditions of the special theory of relativity, but when viewed from the latter it acquires a novel aspect. For if K be a system of coordinates relatively to which the Lorentzian ether is at rest, the Maxwell-Lorentz equations are valid primarily with reference to K. But by the special theory of relativity the same equations without any change of meaning also hold in relation to any new system of co-ordinates K’ which is moving in uniform translation relatively to K. Now comes the anxious question:- Why must I in the theory distinguish the K system above all K’ systems, which are physically equivalent to it in all respects, by assuming that the ether is at rest relatively to the K system? For the theoretician such an asymmetry in the theoretical structure, with no corresponding asymmetry in the system of experience, is intolerable. If we assume the ether to be at rest relatively to K, but in motion relatively to K’, the physical equivalence of K and K’ seems to me from the logical standpoint, not indeed downright incorrect, but nevertheless unacceptable.

The next position which it was possible to take up in face of this state of things appeared to be the following. The ether does not exist at all. The electromagnetic fields are not states of a medium, and are not bound down to any bearer, but they are independent realities which are not reducible to anything else, exactly like the atoms of ponderable matter. This conception suggests itself the more readily as, according to Lorentz’s theory, electromagnetic radiation, like ponderable matter, brings impulse and energy with it, and as, according to the special theory of relativity, both matter and radiation are but special forms of distributed energy, ponderable mass losing its isolation and appearing as a special form of energy.

More careful reflection teaches us however, that the special theory of relativity does not compel us to deny ether. We may assume the existence of an ether; only we must give up ascribing a definite state of motion to it, i.e. we must by abstraction take from it the last mechanical characteristic which Lorentz had still left it. We shall see later that this point of view, the conceivability of which I shall at once endeavour to make more intelligible by a somewhat halting comparison, is justified by the results of the general theory of relativity.

Think of waves on the surface of water. Here we can describe two entirely different things. Either we may observe how the undulatory surface forming the boundary between water and air alters in the course of time; or else-with the help of small floats, for instance – we can observe how the position of the separate particles of water alters in the course of time. If the existence of such floats for tracking the motion of the particles of a fluid were a fundamental impossibility in physics – if, in fact nothing else whatever were observable than the shape of the space occupied by the water as it varies in time, we should have no ground for the assumption that water consists of movable particles. But all the same we could characterise it as a medium.

We have something like this in the electromagnetic field. For we may picture the field to ourselves as consisting of lines of force. If we wish to interpret these lines of force to ourselves as something material in the ordinary sense, we are tempted to interpret the dynamic processes as motions of these lines of force, such that each separate line of force is tracked through the course of time. It is well known, however, that this way of regarding the electromagnetic field leads to contradictions.

Generalising we must say this:- There may be supposed to be extended physical objects to which the idea of motion cannot be applied. They may not be thought of as consisting of particles which allow themselves to be separately tracked through time. In Minkowski’s idiom this is expressed as follows:- Not every extended conformation in the four-dimensional world can be regarded as composed of world-threads. The special theory of relativity forbids us to assume the ether to consist of particles observable through time, but the hypothesis of ether in itself is not in conflict with the special theory of relativity. Only we must be on our guard against ascribing a state of motion to the ether.

Certainly, from the standpoint of the special theory of relativity, the ether hypothesis appears at first to be an empty hypothesis. In the equations of the electromagnetic field there occur, in addition to the densities of the electric charge, only the intensities of the field. The career of electromagnetic processes in vacuo appears to be completely determined by these equations, uninfluenced by other physical quantities. The electromagnetic fields appear as ultimate, irreducible realities, and at first it seems superfluous to postulate a homogeneous, isotropic ether-medium, and to envisage electromagnetic fields as states of this medium. But on the other hand there is a weighty argument to be adduced in favour of the ether hypothesis. To deny the ether is ultimately to assume that empty space has no physical qualities whatever. The fundamental facts of mechanics do not harmonize with this view. For the mechanical behaviour of a corporeal system hovering freely in empty space depends not only on relative positions (distances) and relative velocities, but also on its state of rotation, which physically may be taken as a characteristic not appertaining to the system in itself. In order to be able to look upon the rotation of the system, at least formally, as something real, Newton objectivises space. Since he classes his absolute space together with real things, for him rotation relative to an absolute space is also something real. Newton might no less well have called his absolute space “Ether”; what is essential is merely that besides observable objects, another thing, which is not perceptible, must be looked upon as real, to enable acceleration or rotation to be looked upon as something real.

It is true that Mach tried to avoid having to accept as real something which is not observable by endeavouring to substitute in mechanics a mean acceleration with reference to the totality of the masses in the universe in place of an acceleration with reference to absolute space. But inertial resistance opposed to relative acceleration of distant masses presupposes action at a distance; and as the modern physicist does not believe that he may accept this action at a distance, he comes back once more, if he follows Mach, to the ether, which has to serve as medium for the effects of inertia. But this conception of the ether to which we are led by Mach’s way of thinking differs essentially from the ether as conceived by Newton, by Fresnel, and by Lorentz. Mach’s ether not only conditions the behaviour of inert masses, but is also conditioned in its state by them.

Mach’s idea finds its full development in the ether of the general theory of relativity. According to this theory the metrical qualities of the continuum of space-time differ in the environment of different points of space-time, and are partly conditioned by the matter existing outside of the territory under consideration. This space-time variability of the reciprocal relations of the standards of space and time, or, perhaps, the recognition of the fact that “empty space” in its physical relation is neither homogeneous nor isotropic, compelling us to describe its state by ten functions (the gravitation potentials gmn), has, I think, finally disposed of the view that space is physically empty. But therewith the conception of the ether has again acquired an intelligible content although this content differs widely from that of the ether of the mechanical undulatory theory of light. The ether of the general theory of relativity is a medium which is itself devoid of all mechanical and kinematical qualities, but helps to determine mechanical (and electromagnetic) events.

What is fundamentally new in the ether of the general theory of relativity as opposed to the ether of Lorentz consists in this, that the state of the former is at every place determined by connections with the matter and the state of the ether in neighbouring places, which are amenable to law in the form of differential equations; whereas the state of the Lorentzian ether in the absence of electromagnetic fields is conditioned by nothing outside itself, and is everywhere the same. The ether of the general theory of relativity is transmuted conceptually into the ether of Lorentz if we substitute constants for the functions of space which describe the former, disregarding the causes which condition its state. Thus we may also say, I think, that the ether of the general theory of relativity is the outcome of the Lorentzian ether, through relativation.

As to the part which the new ether is to play in the physics of the future we are not yet clear. We know that it determines the metrical relations in the space-time continuum, e.g. the configurative possibilities of solid bodies as well as the gravitational fields; but we do not know whether it has an essential share in the structure of the electrical elementary particles constituting matter. Nor do we know whether it is only in the proximity of ponderable masses that its structure differs essentially from that of the Lorentzian ether; whether the geometry of spaces of cosmic extent is approximately Euclidean. But we can assert by reason of the relativistic equations of gravitation that there must be a departure from Euclidean relations, with spaces of cosmic order of magnitude, if there exists a positive mean density, no matter how small, of the matter in the universe.

In this case the universe must of necessity be spatially unbounded and of finite magnitude, its magnitude being determined by the value of that mean density.

If we consider the gravitational field and the electromagnetic field from the standpoint of the ether hypothesis, we find a remarkable difference between the two. There can be no space nor any part of space without gravitational potentials; for these confer upon space its metrical qualities, without which it cannot be imagined at all. The existence of the gravitational field is inseparably bound up with the existence of space. On the other hand a part of space may very well be imagined without an electromagnetic field; thus in contrast with the gravitational field, the electromagnetic field seems to be only secondarily linked to the ether, the formal nature of the electromagnetic field being as yet in no way determined by that of gravitational ether. From the present state of theory it looks as if the electromagnetic field, as opposed to the gravitational field, rests upon an entirely new formal motif, as though nature might just as well have endowed the gravitational ether with fields of quite another type, for example, with fields of a scalar potential, instead of fields of the electromagnetic type.

Since according to our present conceptions the elementary particles of matter are also, in their essence, nothing else than condensations of the electromagnetic field, our present view of the universe presents two realities which are completely separated from each other conceptually, although connected causally, namely, gravitational ether and electromagnetic field, or – as they might also be called – space and matter.

Of course it would be a great advance if we could succeed in comprehending the gravitational field and the electromagnetic field together as one unified conformation. Then for the first time the epoch of theoretical physics founded by Faraday and Maxwell would reach a satisfactory conclusion. The contrast between ether and matter would fade away, and, through the general theory of relativity, the whole of physics would become a complete system of thought, like geometry, kinematics, and the theory of gravitation. An exceedingly ingenious attempt in this direction has been made by the mathematician H Weyl; but I do not believe that his theory will hold its ground in relation to reality. Further, in contemplating the immediate future of theoretical physics we ought not unconditionally to reject the possibility that the facts comprised in the quantum theory may set bounds to the field theory beyond which it cannot pass.

Recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this ether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.”

From Einstein’s words, more particularly his words that I have emboldened, I hope that my readers may understand why I feel that ether theory in physics remains a valid hypothesis.

The Future of Fundamental Physics

It is important that you view the contents of this blog in relationship to my new blog entitled: “The fundamental universe revisited“. This new blog is designed to be the master science referential blog for all my science blog postings in my website.

I share with my readers the ideas about physics of this distinguished theoretical physicist Nima Arkani-Hamed

The principle text can be found in this pdf file. I have extracted the quotes below from this paper in order to provide you with a guide to what the principle themes Nima Arkani-Hamed is promoting. The text speaks for itself.

Quotes:

“Abstract:

Fundamental physics began the twentieth century with the twin revolutions of relativity and quantum mechanics, and much of the second half of the century was devoted to the construction of a theoretical structure unifying these radical ideas. But this foundation has also led us to a number of paradoxes in our understanding of nature. Attempts to make sense of quantum mechanics and gravity at the smallest distance scales lead inexorably to the conclusion that space-time is an approximate notion that must emerge from more primitive building blocks. Furthermore, violent short-distance quantum fluctuations in the vacuum seem to make the existence of a macroscopic world wildly implausible, and yet we live comfortably in a huge universe. What, if anything, tames these fluctuations? Why is there a macroscopic universe? These are two of the central theoretical challenges of fundamental physics in the twenty-first century. In this essay, I describe the circle of ideas surrounding these questions, as well as some of the theoretical and experimental fronts on which they are being attacked…”

“…But there is a deeper reason to suspect that something much more interesting and subtle than “atoms of space-time” is at play. The problems with space-time are not only localised to small distances; in a precise sense, “inside” regions of space-time cannot appear in any fundamental description of physics at all…”

“…The fact that quantum mechanics makes it impossible to determine precisely the position and velocity of a baseball is also irrelevant to a baseball player. However, it is of fundamental importance to physics that we cannot speak precisely of position and momentum, but only position or momentum…”

“…This simple observation has huge implications. As discussed above, precise observables require a separation of the world into a) an infinitely large measuring apparatus and b) the system being studied…”

“…It should be clear that we have arrived at a bifurcatory moment in the history of fundamental physics, a moment that has enormous implications for the future of the subject. With many theoretical speculations pointing in radically different directions, it is now up to experiment to render its verdict!…”

“…Today, however, we confront even deeper mysteries, such as coming to grips with emergent time and the application of quantum mechanics to the entire universe. These challenges call for a bigger shift in perspective. Is there any hope for taking such large steps without direct input from experiment?…” [Emergent time relates to the concept of ‘NOW’ and associated simultaneity].

“…Why should it be possible to talk about Newton’s laws in such a different way, which seems to hide their most essential feature of deterministic evolution in time? [Which I agree with] We now know the deep answer to this question is that the world is quantum-mechanical…”

“…There must be a new way of thinking about quantum field theories, in which space-time locality is not the star of the show and these remarkable hidden structures are made manifest. Finding this reformulation might be analogous to discovering the least-action formulation of classical physics; by removing space-time from its primary place in our description of standard physics, we may be in a better position to make the leap to the next theory, where space-time finally ceases to exist…”

Do you care to know more about the highly important Global Consciousness Project [GCP]?

Does this blog provide a pointer to the mysterious side of the human mind?

In my opinion the most significant section of this video presentation commences at the 38 minute mark [more especially from the 40 minute mark]. This section relates to the employment of a random event generator.

The video

If you care to know more about the Global Consciousness Project [GCP] I have provided you with two links:

Link 1

Link 2

I also think my readers should acquaint themselves with this link because it provides a scientific pointer as to how consciousness [I say awareness] may exist outside of our bodies. Readers should also note that the United States government is taking a serious interest in this project. If the sub-quantum physics theory is one day confirmed this means that alleged out of body experiences and phenomena such as ghosts should be taken more seriously.

An important and sad story about the famous Voyager space probes

Whilst it seems that the lifespan of the to Voyager probes may span out to 2030 the missions themselves are presently being wound down

An important part of the reason for this is that the administrators of the program are nearing the end of their working lives. This New York Times Magazine article also states that these aged administrators are the only people capable of handling the antiquated technology of the Voyager probes.

I quote from the New York Times Magazine article:

“As the Voyager mission is winding down, so, too, are the careers of the aging explorers who expanded our sense of home in the galaxy… …For the foreseeable future, Voyager seems destined to remain in the running for the title of Mankind’s Greatest Journey, which might just make its nine flight-team engineers — most of whom have been with the mission since the Reagan administration — our greatest living explorers. They also may be the last people left on the planet who can operate the spacecraft’s onboard computers, which have 235,000 times less memory and 175,000 times less speed than a 16-gigabyte smartphone. And while it’s true that these pioneers haven’t gone anywhere themselves, they are arguably every bit as dauntless as more celebrated predecessors.”

I care to talk about entanglement

In physics quantum entanglement suggests that phenomena are somehow connected to each other, and furthermore, under certain conditions influence each other

My purpose in writing this blog is to attempt to more clearly identify and describe what quantum entanglement may be. I present you with the following information in an attempt to demonstrate to my readers what I consider to be the different interpretations of entanglement in science. It is my opinion that the most popular scientific definitions of entanglement are incomplete (where did it come from?). For my readers I will outline what I think are the most common interpretations of quantum entanglement.

1] A simple explanation of quantum entanglement

2] Wikipedia definition

3] Proof that entanglement a is valid hypothesis

4] A video pertinent to entanglement

5] My views about quantum non-locality are as follows. I believe that both these scientific concepts cannot be effectively separated. Some physicists say that non-locality describes entanglement:

Entanglement implies that information is either shared between two particles or communicated between them in such a way as to cause observations of one particle to be correlated with observations of the other.

Such correlations have been predicted and observed for many years, but it has been difficult to determine if the correlations were caused by information being shared such as through gravity.

Non-locality implies the existence of direct connections between one point in space and another, without going through intervening points. Such direct connections would allow communication faster than the speed of light.

As I suggested above there can be different manifestations of non-locality. One of these is Newton’s force of gravity is theoretically non-local because it theoretically propagates at infinite speed. This is what I believe is happening via the physics model that I have described in another blog entitled Reality with a Matrix

I have written a specific blog wherein I discuss the duality of all that “IS”. with respect to non-locality and sub quantum mechanics theory.

[Item 5 was written with the assistance of M.P.]

About the cosmological ideas of Reg Cahill

I care to introduce my readers to what I consider to be important cosmological research

This research has been conducted by Professor Reg Cahill of Flinders University in South Australia.

1] About Professor Reg Cahill

2] Cahill re-analyses the original 1887 Michelson and Morley interferometer experiments. Cahill believes that this experiment produced a positive result and not a null result as is commonly believed in the physics community.

3] Cahill talks about what he considers to be important unresolved issues in contemporary physics.

4] Morris describes what he considers to be additional evidence relating to the passage of 3D waves through the universe. This experiment seems to support the Cahill dynamic space theory.

Note:

The Cahill Process Physics model has been reviewed and commented upon by the Christopher Klinger in his Ph.D thesis “Process Physics: Bootstrapping Reality from the Limitations of Logic”. Klinger’s thesis has been favourably commented upon by Neil Murray and David Beglar in their guidance manual for effective thesis writing “Inside Track: Writing dissertations and theses”.

Their words: “…..Our thanks also extend to Chris Klinger and Adam Simpson for kindly agreeing that we could use extracts of their work as examples of good practice….”

I quote the abstract of Klinger’s thesis:

“For all the successes of the two edifices of modern physics, quantum theory and Einstein’s relativity, a fundamental description of the Universe as a whole — a theory that informs as to the true nature of reality — has continued to elude science. This thesis describes the development and evolution of a new paradigm called Process Physics, a radical information-theoretic modelling of reality. It is argued that the failure of the extant approaches in physics is the direct consequence of limitations stemming from the mathematization, language and methodology of theoretical physics: the limitations of the postulated background spatial concepts and geometric modelling of time, the limitations of quantum theory in its failure to account for the measurement process and classicality; and the limitations of formal systems. In contrast, Process Physics utilizes the limitations of logic first identified by Godel and asserts the priority of process and relational endophysics, realized via a stochastic, autopoietic bootstrap system whose properties emerge a posteriori rather than being assumed a priori. The work is arranged in two parts. Part I discusses the historical, philosophical, and metaphysical foundations of physics to consider how the prevailing views in modern physics arose and what this revealed and contributed to the development of Process Physics. Part II describes the fundamentals of the new theory and its implementation, and demonstrates the viability of looking outside the current paradigms by showing that Process Physics yields unified emergent phenomena that permit an understanding of fundamental processes and penultimately motivate both quantum theory and relativity as relevant higher-level descriptors within their respective domains.”

Klinger’s complete work can be found here.

The SMUT [Static Mass Universe Tracking] particle discussion, an all embracing presentation

The SMUT [Static Mass Universe Tracking] particle experiment and related material thereto Note to readers:

Here are the blogs related to the SMUT [Static Mass Universe Tracking] particle, the theory behind the SMUT particle itself, the experiment involving the SMUT particle and some adjunct uses relating to the SMUT particle experiment apparatus. All material surrounding the SMUT particle and the ideas related can be found in the blogs below. All blogs are self descriptive and as a whole are self contained.

Readers should note that neither Freeman nor Grant has the mathematical knowledge and training to develop the necessary mathematical formulas to establish the veracity of the SMUT particle concept. If you are seeking maths equations relating to the SMUT particle they do not exist.

The blogs that follow are in order of ease of understanding. One blog is not more pertinent than another and are mutually complimentary to each other.

What is a SMUT [Static Mass Universe Tracking] particle? What are its characteristics? How is the SMUT particle created?:

What is the SMUT particle?

http://www.jonathonfreeman.org/what-is-the-s-m-u-t-particle/

Important note about the formation of the virtual version of the SMUT particle

http://www.jonathonfreeman.org/important-note-about-the-formation-of-the-virtual-version-of-the-s-m-u-t-particle/

A closer look at the SMUT particle

http://www.jonathonfreeman.org/a-closer-look-at-the-s-m-u-t-particle-experiment/

Likely questions about the SMUT particle

http://www.jonathonfreeman.org/likely-questions-about-the-s-m-u-t-particle/

The SMUT particle’s relationship with gravity and time

http://www.jonathonfreeman.org/the-smut-particles-relationship-with-gravity-and-time/

The theory [plus information related to the theory] that the SMUT particle experiment is designed to established:

The inherent nature and qualities of the All Seasons Particle

http://www.jonathonfreeman.org/the-inherent-nature-and-qualities-of-the-all-seasons-particle/

My opinion about imaginary mass

http://www.jonathonfreeman.org/my-opinion-about-imaginary-mass/

The relationship between the Awareness model of physics and a supporting experiment

http://www.jonathonfreeman.org/the-relationship-between-the-tdes-awareness-model-of-physics-and-a-supporting-experiment/

The dynamic feature of the Awareness physics model is the SMUT particle

http://www.jonathonfreeman.org/the-dynamic-feature-of-the-awareness-physics-model/

Concluding the SMUT particle discussion

http://www.jonathonfreeman.org/concluding-the-s-m-u-t-particle-debate/

The following three blogs provide details about the SMUT particle experiment. The first blog is a compact version of the experiment that has been designed for the benefit of laypersons. The second blog is a more comprehensive description of the same experiment. The third blog relates to the special equipment required to conduct the experiment.

SMUT particle experiment – a short explanation

http://www.jonathonfreeman.org/s-m-u-t-particle-experiment-a-short-explanation/

The Static Mass Universe Tracking [SMUT] particle experiment

http://www.jonathonfreeman.org/the-static-mass-universe-tracking-s-m-u-t-particle-experiment/

Customised Casimir plates for the SMUT particle experiment – a short explanation

http://www.jonathonfreeman.org/custom-casimir-plates-for-the-s-m-u-t-particle-experiment-a-short-explanation/

An adjunct experiment to the primary SMUT particle experiment and associated alternative uses for the SMUT particle experiment apparatus:

A secondary experiment to the SMUT particle experiment

http://www.jonathonfreeman.org/a-secondary-experiment-to-the-s-m-u-t-particle-experiment/

How to use of the SMUT particle experiment as an energy generator

http://www.jonathonfreeman.org/how-to-use-of-the-s-m-u-t-particle-experiment-as-a-generator/

How the SMUT particle experiment set up would work as an interstellar compass

http://www.jonathonfreeman.org/the-s-m-u-t-particle-experiment-setup-would-work-as-an-interstellar-compass/

Morphogenic field theory, the great mystery in physics

It is important that you view the contents of this blog in relationship to my new blog entitled: “The fundamental universe revisited“. This new blog is designed to be the master science referential blog for all my science blog postings in my website.

The magic of morphogenic field theory. Is Rupert Sheldrake a genius or not?

https://en.wikipedia.org/wiki/Morphogenetic_field

A video about Sheldrake’s beliefs [I will return to this item and write further ideas about it]:

https://vimeo.com//220820650

Profiles of scientists that I respect and sometimes quote

Below you will find two sets of references that have also played an important role in how I have gone about writing much of my scientific work

6.1 Prof. Roger Penrose

6.2 Prof. Karl H. Pribram

6.3 Prof. David Bohm

6.4 Prof. Rupert Sheldrake

6.5 Prof. Antony Valentini

6.6 Prof. Reg Cahill

6.7 Prof. Richard Amoroso

6.8 Prof. Benoit Mandelbrot

6.9 Prof. Richard Feynman

6.10 Prof. Benjamin Walker

6.11 Prof. Basil Hiley

Reference one:

Important primary material that I have referred to as I have been developing my Primordial Awareness model of reality

http://www.jonathonfreeman.org/the-primary-sourced-scientific-material-i-have-used-to-build-my-awareness-model-of-physics/

Reference two:

Important secondary material that I have incorporated into my science writings

http://www.jonathonfreeman.org/important-secondary-material-that-i-have-incorporated-in-my-science-writings/